Using a Technology-enhanced Curriculum to Improve the Learning of Important Mathematics for English Language Learners (and **all** students!)

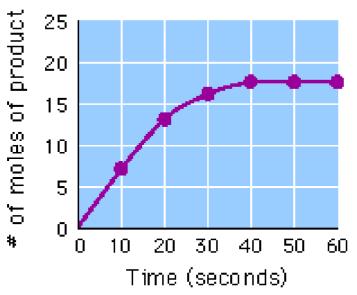
Phil Vahey Teresa Lara-Meloy

NSF

Center for Technology In Learning SRI International Menlo Park California USA

Our Challenge

Democratizing access to important mathematics for all students


NCTM Focal Points

Proportionality (7th Grade)
...Students graph
proportional relationships and
identify the unit rate as the
slope of the related line.

Linear Function (8th Grade)
...Students translate among
verbal, tabular, graphical,
and algebraic representations
of [linear] functions.

Rate and Proportionality in High School Science

LEAF SIZE OF MAPLE TREES

Tree	Average Length (cm)	Average Width (cm)
1	16.0	9.0
2	10.0	5.0
3	19.0	10.0
4	15.0	8.0

Focus on Mathematical Discourse

Build on existing competencies and experiences

Focus on communication

Use multiple forms of representation and expression

Negotiate mathematical meanings

(e.g. J. Moschovitch (2007); Kaput and Roschelle, (1998)).

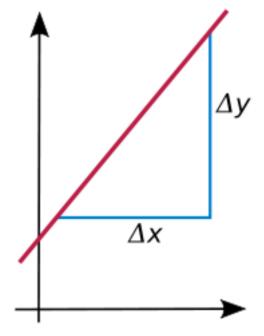
Dynamic Math Environments: Specific (not unique) Benefits for ELL students

Direct interaction with mathematical objects

- Reduce linguistic load
- Make connections between representations
- Provide access to high-level math

Common objects for discussion

- Gestures can refer to mathematical objects
- Can verbally refer to objects without requiring formal math terms (which is learned after the concepts!)


Provide shared experiences

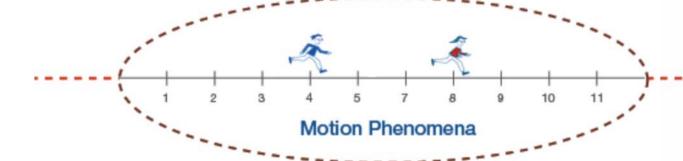
Support for real mathematical discourse in real classes!

The slope m of a line - its steepness, or slant - can be calculated like this:

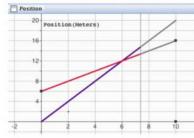
m = <u>change in y-value</u> change in x-value

The equation of any straight line, called a linear equation, can be written as: y = mx + b, where m is the slope of the line and b is the y-intercept.

The slope of a line is defined as the rise over the run, $m = \Delta y / \Delta x$.


The SimCalc Approach

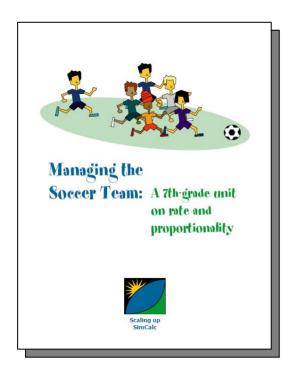
Narrative

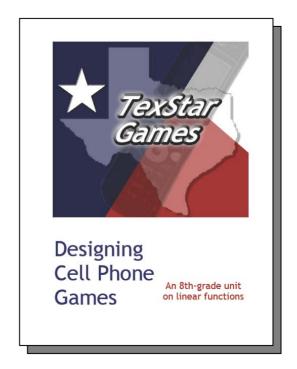

The red one started off ahead, but was running slowly. The blue one started off behind, but ran faster and was ahead by the end.

Algebraic Expression

$$y = x + 6$$
$$y = 2x$$

Graph


Table

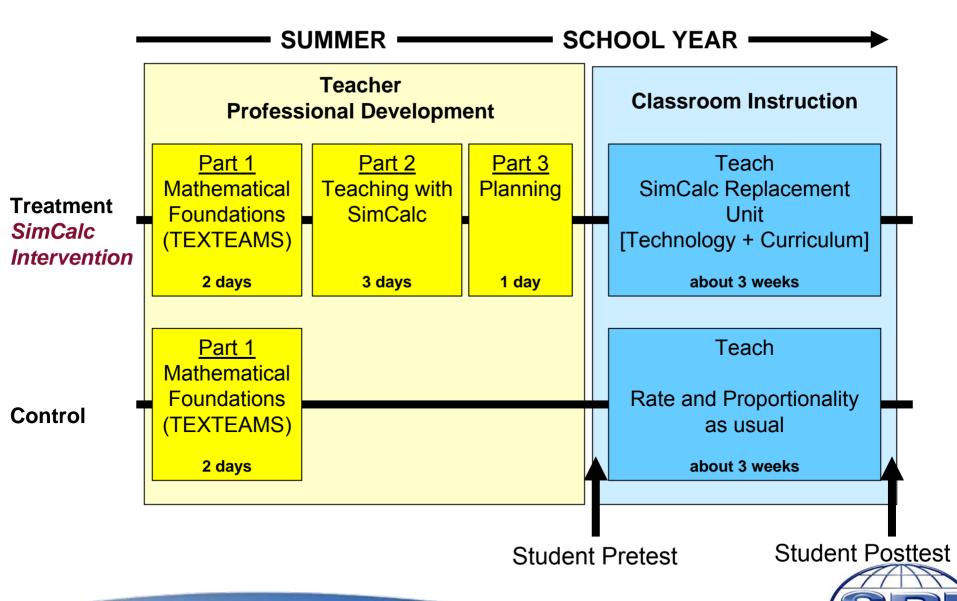

Time	B Pos	A Pos
00.00	6.00	0.00
01.00	7.00	2.00
02.00	8.00	4.00
03.00	9.00	6.00
04.00	10.00	8.00
05.00	11.00	10.00
06.00	12.00	12.00
07.00	13.00	14.00
08.00	14.00	16.00
09.00	15.00	18.00
10.00	16.00	20.00

Can it work in a wide variety of settings? (yes) Results from Research with 95 Texas Teachers

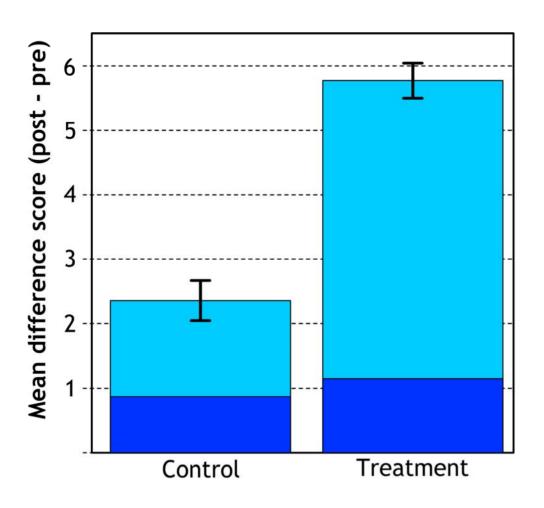
Intervention: An Integration of Technology, Curriculum, and TPD

Proportionality (7th Grade)

- Linear function in the form y=kx
- Rate


<u>Linear Function (8th Grade)</u>

- Linear function in the form y=mx+b
- Average rate


QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Experimental Design

SimCalc Students Scored Higher

(classroom level)

Experimental Group

Subscale

- "Complex" proportionality
- "Simple" proportionality

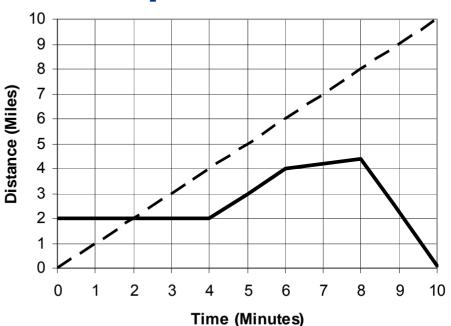
The overall effect size was 0.84, considered large in education studies

$$(t(93) = 9.1, P < 0.0001)$$

N = 95 teachers,

1,501 students

(737 Hispanic; 267 ELL)

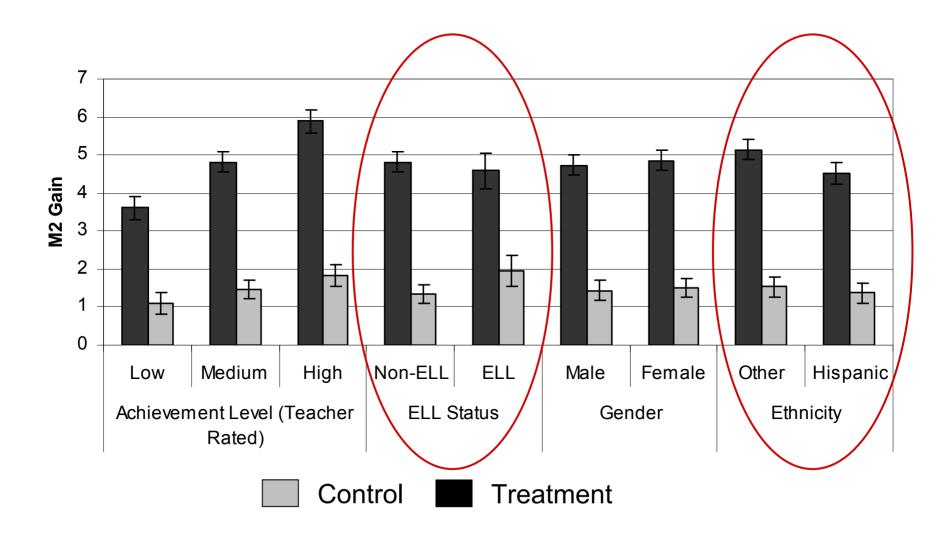


Simple

A car of the future will be able to travel 8 miles in 2 minutes.

 How far will it be able to travel in 5 minutes?

Complex



When are they traveling at the same speed?

Capitol Border Metropolis Rural

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

All student groups learned more with SimCalc

Common Strategies in Use for ELL students

- Focus exclusively on "the basics"
- Repeat instruction slower and louder

- Instruction in the "math legisla"

 Translation to language spoken at home
 USE of child
 - Use of children's native language for instruction

Ongoing work

Las Cruces Public Schools, NM

- Working with teachers to create differentiation strategies
- Focus on low-achieving students
- Third largest school district in New Mexico (24K students)
- "Small city" settings

Teacher Cadre

 Professional Development for teacher leaders, primarily in Texas (up to 180 new SimCalc teachers)

Continuing research and partnerships

- Investigating how to improve SimCalc for ELL students
- Please contact us!

Points to Remember

Top level: not "see, technology works!"

We studied an integration of dynamic math, curriculum & TPD Key Points:

Challenge: Democratizing Access to Complex Mathematics

Strategy:

- Representational Use of Technology
- Rich tasks
- Transformation of how we engage students

Findings:

- Gains across multiple experiments (7th, 8th, ...)
- Gains were robust across settings and demographics

ELL students can learn complex math in such environments

Recommendations

- While software alone has sometimes been shown not to make a difference, integrated systems of curriculum, dynamic math software, and TPD can make a difference.
- Dynamic mathematics software can be suitable for both advantaged and disadvantaged student populations.
- Dynamic mathematics software has benefits that may be particularly suitable for ELL students

Thanks!

http://math.sri.com or google "SimCalc"

philip.vahey@sri.com; teresa.lara-meloy@sri.com

Principal Investigator: jeremy.roschelle@sri.com

